There is an electric field $E$ in $X$-direction. If the work done on moving a charge $0.2\,C$ through a distance of $2\,m$ along a line making an angle $60^\circ $ with the $X$-axis is $4.0\;J$, what is the value of $E$........ $N/C$

  • [AIPMT 1995]
  • A

    $\sqrt 3 $

  • B

    $4$

  • C

    $5$

  • D

    $20$

Similar Questions

Calculate potential energy of a point charge $-q$ placed along the axis due to a charge $+ Q$ uniformly distributed along a ring of radius $R$. Sketch $P.E.$ as a function of axial distance $z$ from the centre of the ring. Looking at graph, can you see what would happen if $-q$ is displaced slightly from the centre of the ring (along the axis) ?

In an electrical circuit, a battery is connected to pass $20\, C$ of charge through it in a certain given time. The potential difference between two plates of the battery is maintained at $15\, V$. The work done by the battery is ........... $J$.

  • [JEE MAIN 2021]

On moving a charge of $20$ coulombs by $2 \;cm , 2 \;J$ of work is done, then the potential difference between the points is (in $volt$)

  • [AIEEE 2002]

A block of mass $m$ moving with speed $v$ compresses a spring through distance $x$ before its speed is halved. What is the value of spring constant ?

A test charge $q$ is made to move in the electric field of a point charge $Q$ along two different closed paths as per figure. First path has sections along and perpendicular to lines of electric field. Second path is a rectangular loop of the same area as the first loop. How does the work done compare in the two cases ?