There are two charges $+1$ microcoulombs and $+5$ microcoulombs. The ratio of the forces acting on them will be
$1:5$
$1:1$
$5:1$
$1:25$
An infinite number of point charges, each carrying $1 \,\mu C$ charge, are placed along the y-axis at $y=1\, m , 2\, m , 4 \,m , 8\, m \ldots \ldots \ldots \ldots \ldots$
The total force on a $1 \,C$ point charge, placed at the origin, is $x \times 10^{3}\, N$. The value of $x$, to the nearest integer, is .........
[Take $\left.\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \,Nm ^{2} / C ^{2}\right]$
Two positive charges of $20$ $coulomb$ and $Q\;coulomb$ are situated at a distance of $60\,cm$. The neutral point between them is at a distance of $20\,cm$ from the $20\,coulomb$ charge. Charge $Q$ is.....$C$
Two insulated charged copper spheres $A$ and $B$ have their centres separated by a distance of $50 \;cm$. the charge on each is $6.5 \times 10^{-7}\; C?$ Suppose the spheres $A$ and $B$ have identical sizes.A third sphere of the same size but uncharged is brought in contact with the first, then brought in contact with the second, and finally removed from both. What is the new force of repulsion between $A$ and $B?$
Two charged spheres separated at a distance $d$ exert a force $F$ on each other. If they are immersed in a liquid of dielectric constant $2$, then what is the force (if all conditions are same)
How did Coulomb find the law of value of electric force between two point charges ?