The value of $x$, for which the 6th term in the expansion of ${\left\{ {{2^{{{\log }_2}\sqrt {({9^{x - 1}} + 7)} }} + \frac{1}{{{2^{(1/5){{\log }_2}({3^{x - 1}} + 1)}}}}} \right\}^7}$ is $84$, is equal to
$4$
$1$
$2$
$b$ or $c$ both
Show that the coefficient of the middle term in the expansion of $(1+x)^{2 n}$ is equal to the sum of the coefficients of two middle terms in the expansion of $(1+x)^{2 n-1}$
In the expansion of $(1 + x + y + z)^4$ the ratio of coefficient of $x^2y, xy^2z, xyz$ are
If the coefficient of $x ^7$ in $\left(a x-\frac{1}{b x^2}\right)^{13}$ and the coefficient of $x^{-5}$ in $\left(a x+\frac{1}{b x^2}\right)^{13}$ are equal, then $a^4 b^4$ is equal to :
The coefficient of the term independent of $x$ in the expansion of ${\left( {\sqrt {\frac{x}{3}} + \frac{3}{{2{x^2}}}} \right)^{10}}$ is