The three rods shown in figure have identical dimensions. Heat flows from the hot end at a rate of $40 \,W$ in the arrangement $(a)$. Find the rates of heat flow when the rods are joined as in arrangement $(b)$ is ......... $W$ (Assume $K_al=200 \,W / m ^{\circ} C$ and $\left.K_{c u}=400 \,W / m ^{\circ} C \right)$

213099-q

  • A

    $75$

  • B

    $200$

  • C

    $400$

  • D

    $4$

Similar Questions

The dimensional formula for thermal resistance is

An insulated container is filled with ice at $0\,^oC$ , and another container is filled with water that is continuously boiling at $100\,^oC$ . In series of experiments, the containers are connected by various thick metal rods that pass through the walls of container as shown in the figure

In the experiment $I$ : a copper rod is used and all ice melts in $20$ minutes.

In the experiment $II$ : a steel rod of identical dimensions is used and all ice melts in $80$ minutes.

In the experiment $III$ : both the rods are used in series and all ice melts in $t_{10}$ minutes.

In the experiment $IV$ : both rods are used in parallel and all ice melts in $t_{20}$ minutes.

A cylindrical rod with one end in a steam chamber and the other end in ice results in melting of $0.1$ gm of ice per second. If the rod is replaced by another with half the length and double the radius of the first and if the thermal conductivity of material of second rod is $\frac{1}{4}$ that of first, the rate at which ice melts in $gm/\sec $will be

In a steady state, the temperature at the end $A$ and $B$ of $20\,cm$ long rod $AB$ are $100\,^oC$ and $0\,^oC$ respectively. The temperature of a point $9\,cm$ from $A$ is....... $^oC$

Ice formed over lakes has