The sum of the solutions of the equation $\left| {\sqrt x - 2} \right| + \sqrt x \left( {\sqrt x - 4} \right) + 2 = 0\left( {x > 0} \right)$ is equal to
$9$
$4$
$10$
$12$
Let $p_1(x)=x^3-2020 x^2+b_1 x+c_1$ and $p_2(x)=x^3-2021 x^2+b_2 x+c_2$ be polynomials having two common roots $\alpha$ and $\beta$. Suppose there exist polynomials $q_1(x)$ and $q_2(x)$ such that $p_1(x) q_1(x)+p_2(x) q_2(x)=x^2-3 x+2$. Then the correct identity is
If the equation $\frac{{{x^2} + 5}}{2} = x - 2\cos \left( {ax + b} \right)$ has atleast one solution, then $(b + a)$ can be equal to
Sum of the solutions of the equation $\left[ {{x^2}} \right] - 2x + 1 = 0$ is (where $[.]$ denotes greatest integer function)
If $x$ is real, the expression $\frac{{x + 2}}{{2{x^2} + 3x + 6}}$ takes all value in the interval