The reaction ${N_2}{O_5}$ (in $CCl_4$ solution) $ \to 2N{O_2}$ (solution) $ + \frac{1}{2}{O_2}(g)$ is of first order in ${N_2}{O_5}$ with rate constant $6.2 \times {10^{ - 1}}{s^{ - 1}}.$ What is the value of rate of reaction when $[{N_2}{O_5}] = 1.25\,mole\,{l^{ - 1}}$
$7.75 \times {10^{ - 1}}\,mole\,{l^{ - 1}}{s^{ - 1}}$
$6.35 \times {10^{ - 3}}\,mole\,{l^{ - 1}}{s^{ - 1}}$
$5.15 \times {10^{ - 5}}\,mole\,{l^{ - 1}}{s^{ - 1}}$
$3.85 \times {10^{ - 1}}\,mole\,{l^{ - 1}}\,{s^{ - 1}}$
Which of the following optioms correctly represents relationship between $t_{7/8}$ and $t_{1/2}$ where $t_{7/8}$ represent time required for concentration to become $\frac{1}{8} \,th$ of original for a reaction of order $'n'$
Select the rate law for reaction $A + B \longrightarrow C$
Exp | $[A]$ | $[B]$ | Rate |
$1$ | $0.012$ | $0.035$ | $0.10$ |
$2$ | $0.024$ | $0.070$ | $0.80$ |
$3$ | $0.024$ | $0.035$ | $0.10$ |
$4$ | $0.012$ | $0.070$ | $0.80$ |
Write about elementary and complex reactions.
Consider the following data for the given reaction $2 \mathrm{HI}_{(\mathrm{g})} \rightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}$ . The order of the reaction is................
$1$ | $2$ | $3$ | |
$\mathrm{HI}\left(\mathrm{mol} \mathrm{L}^{-1}\right)$ | $0.005$ | $0.01$ | $0.02$ |
Rate $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}-1\right)$ | $7.5 \times 10^{-4}$ | $3.0 \times 10^{-3}$ | $1.2 \times 10^{-2}$ |
What is the order of reaction $r\, = \,k{[A]^{\frac{3}{2}}}\,{[B]^2}$ ?