The ratio of peak value and r.m.s value of an alternating current is
$1$
$\frac{1}{2}$
$\sqrt 2 $
$1/\sqrt 2 $
What are $AC$ voltage ? Write the equation for $ac$ voltage.
An electric lamp is connected to $220 V, 50 Hz$ supply. Then the peak value of voltage is......$V$
In an $A.C.$ circuit, $I_{\text {rms }}$ and $I_{0}$ are related as
The peak value of $220 \,volts$ of $ac$ mains is......$volts$
The instantaneous voltages at three terminals marked $\mathrm{X}, \mathrm{Y}$ and $\mathrm{Z}$ are given by
$V_x=V_0 \sin \omega t$ $V_y=V_0 \sin \left(\omega t+\frac{2 \pi}{3}\right) \text { and }$ $V_z=V_0 \sin \left(\omega t+\frac{4 \pi}{3}\right)$
An ideal voltmeter is configured to read rms value of the potential difference between its terminals. It is connected between points $\mathrm{X}$ and $\mathrm{Y}$ and then between $\mathrm{Y}$ and $\mathrm{Z}$. The reading(s) of the voltmeter will be
$[A]$ $\mathrm{V}_{\mathrm{XY}}^{\mathrm{mms}}=\mathrm{V}_0 \sqrt{\frac{3}{2}}$
$[B]$ $\mathrm{V}_{\mathrm{YZ}}^{\mathrm{mms}}=\mathrm{V}_0 \sqrt{\frac{1}{2}}$
$[C]$ $\mathrm{V}_{\mathrm{XY}}^{\mathrm{mms}}=\mathrm{V}_0$
$[D]$ independent of the choice of the two terminals