The range of the function $f(x) = \frac{x}{{1 + \left| x \right|}},\,x \in R,$ is

  • [AIEEE 2012]
  • A

    $R$

  • B

    $(-1,1)$

  • C

    $R-\{0\}$

  • D

    $[-1,1]$

Similar Questions

If a function $f(x)$ is such that $f\left( {x + \frac{1}{x}} \right) = {x^2} + \frac{1}{{{x^2}}};$ then  $(fof )$ $\sqrt {11} )$ =

Function $f(x)={\left( {1 + \frac{1}{x}} \right)^x}$ then Range of the function f (x) is

If $f(x)$ is a function satisfying $f(x + y) = f(x)f(y)$ for all $x,\;y \in N$ such that $f(1) = 3$ and $\sum\limits_{x = 1}^n {f(x) = 120} $. Then the value of $n$ is

  • [IIT 1992]

If $f (x) =$ $\left[ \begin{gathered}  {x^2}\,\,\,\,\,\,\,\,\,\,\,\,if\,\,\,\,x \leqslant \,{x_0} \hfill \\   ax + b\,\,\,\,\,if\,\,\,\,x\, > \,{x_0} \hfill \\ \end{gathered}  \right.$ derivable $\forall \,x\, \in \,R\,\,$ then the values of $a$ and $b$ are respectively

A function $f(x)$ is given by $f(x)=\frac{5^{x}}{5^{x}+5}$, then the sum of the series

$f\left(\frac{1}{20}\right)+f\left(\frac{2}{20}\right)+f\left(\frac{3}{20}\right)+\ldots \ldots+f\left(\frac{39}{20}\right)$ is equal to ....... .

  • [JEE MAIN 2021]