एक नाभिक की त्रिज्या $r _0 A ^{1 / 3}$ द्वारा दी जाती है, जहाँ $r _0=1.3 \times 10^{15} \,m$ एवं $A$ नाभिक की द्रव्यमान संख्या है। सीसा (lead) के नाभिक के लिए $A$ $=206$ | इस नाभिक में दो प्रोटानों के बीच का स्थिरविद्युत बल का मान ......... $N$ निम्न के निकट होगा

  • [KVPY 2016]
  • A

    $10^2$

  • B

    $10^7$

  • C

    $10^{12}$

  • D

    $10^{17}$

Similar Questions

$\frac{1}{2} m v^{2}$ ऊर्जा का एक अल्फा कण-नाभिक, $Z e$ आवेश के एक भारी नाभिकीय लक्ष्य पर टकराता है। अल्फा-नाभिक के लिये समीपतम पहुँचने की दूरी, निम्नांकित में किसके अनुक्रमानुपाती होगी?

  • [AIEEE 2006]

क्लासिकी रूप में किसी परमाणु में इलेक्ट्रॉन नाभिक के चारों ओर किसी भी कक्षा में हो सकता है। तब प्ररूपी परमाणवीय साइज़ किससे निर्धारित होता है? परमाणु अपने प्ररूपी साइज़ की अपेक्षा दस हज्ञार गुना बड़ा क्यों नहीं है? इस प्रश्न ने बोर को अपने प्रसिद्ध परमाणु मॉडल, जो आपने पाठ्यपुस्तक में पढ़ा है, तक पहुँचने से पहले बहुत उलझन में डाला था। अपनी खोज से पूर्व उन्होंने क्या किया होगा, इसका अनुकरण करने के लिए हम मूल नियतांकों की प्रकृति के साथ निम्न गतिविधि करके देंखें कि क्या हमें लंबाई की विमा वाली कोई राशि प्राप्त होती है, जिसका साइज़, लगभग परमाणु के ज्ञात साइज़ $\left(\sim 10^{-10} m \right)$ के बराबर है।

$(a)$ मूल नियतांकों $e, m_{\varepsilon},$ और $c$ से लंबाई की विमा वाली राशि की रचना कीजिए। उसका संख्यात्मक मान भी निर्धारित कीजिए।

$(b)$ आप पाएंगे कि $(a)$ में प्राप्त लंबाई परमाण्वीय विमाओं के परिमाण की कोटि से काफी छोटी है। इसके अतिरिक्त इसमें $c$ सम्मिलित है। परंतु परमाणुओं की ऊर्जा अधिकतर अनापेक्षिकीय क्षेत्र (non-relativisitic domain) में है जहाँ $c$ की कोई अपेक्षित भूमिका नहीं है। इसी तर्क ने बोर को $C$ का परित्याग कर सही परमाण्वीय साइज़ को प्राप्त करने के लिए ' कुछ अन्य ' देखने के लिए प्रेरित किया। इस समय प्लांक नियतांक $h$ का कहीं और पहले ही आविर्भाव हो चुका था। बोर की सूश्मदृष्टि ने पहचाना कि $h, m_{ e }$ और $e$ के प्रयोग से ही सही परमाणु साइज़ प्राप्त होगा। अत: $h, m_{e}$ और $e$ से ही लंबाई की विमा वाली किसी राशि की रचना कीजिए और पुष्टि कीजिए कि इसका संख्यात्मक मान, वास्तव में सही परिमाण की कोटि का है।

मान लीजिए कि स्वर्ण पन्नी के स्थान पर ठोस हाइड्रोजन की पतली शीट का उपयोग करके आपको ऐल्फा-कण प्रकीर्णन प्रयोग दोहराने का अवसर प्राप्त होता है। (हाइड्रोजन $14 K$ से नीचे

एक दृष्टिकोण के अनुसार पदार्थ केवल पाँच तत्वों से निर्मित है |इस दृष्टिकोण को समायोजित (समंजित) करने के लिए एक वैज्ञानिक निम्नलिखित परिकल्यना प्रस्तुत करती है : परमाणुओं की अधिक्तम क्वांटम संख्या $n _{\max }$ से ज्यादा नहीं हो सकती है। तब निम्न में से कौन सा कथन सही है ?

  • [KVPY 2021]

परमाणुओं की संरचना को निकालने के लिये रदफफोर्ड प्रकीर्णन प्रयोग में इस्तेमाल किये गये कणों की

  • [KVPY 2017]