The quantity of heat which crosses unit area of a metal plate during conduction depends upon
The density of the metal
The temperature gradient perpendicular to the area
The temperature to which the metal is heated
The area of the metal plate
An ice box used for keeping eatable cold has a total wall area of $1\;metr{e^2}$ and a wall thickness of $5.0cm$. The thermal conductivity of the ice box is $K = 0.01\;joule/metre{ - ^o}C$. It is filled with ice at ${0^o}C$ along with eatables on a day when the temperature is $30°C$ . The latent heat of fusion of ice is $334 \times {10^3}joules/kg$. The amount of ice melted in one day is ........ $gms$ ($1day = 86,400\;\sec onds$)
Two different rods $A$ and $B$ are kept as shown in figure. The variation of temperature of different cross sections is plotted in a graph shown in figure. The ratio of thermal conductivities of $A$ and $B$ is
At a common temperature, a block of wood and a block of metal feel equally cold or hot. The temperatures of block of wood and block of metal are
Figure shows three different arrangements of materials $1, 2$ and $3$ to form a wall. Thermal conductivities are $k_1 > k_2 > k_3$ . The left side of the wall is $20\,^oC$ higher than the right side. Temperature difference $\Delta T$ across the material $1$ has following relation in three cases
$ABCDE$ is a regular pentagon of uniform wire. The rate of heat entering at $A$ and leaving at $C$ is equal. $T_B$ and $T_D$ are temperature of $B$ and $D$ . Find the temperature $T_C$