The percentage of pyridine $(C_5H_5N)$ that forms pyridinium ion $(C_5H_5N^+H)$ in a $0.10\, M$ aqueous pyridine solution ($K_b$ for $C_5H_5N = 1.7 \times 10^{-9}$) is
$0.0060 \%$
$0.013\%$
$0.77\%$
$1.6\%$
A weak acid is $ 0.1\% $ ionised in $0.1\, M $ solution. Its $pH$ is
$50\ ml$ of $0.02\ M$ $NaHSO_4$ is mixed with $50$ $ml$ of $0.02\ M\ Na_2SO_4$. Calculate $pH$ of the resulting solution.$[pKa_2 (H_2SO_4) = 2]$
The solubility of a salt of weak acid $( A B )$ at $pH 3$ is $Y \times 10^{-3} mol L ^{-1}$. The value of $Y$ is
. . . . . (Given that the value of solubility product of $A B \left( K _{ sp }\right)=2 \times 10^{-10}$ and the value of ionization constant of $H B \left( K _{ a }\right)=1 \times 10^{-8}$ )
Determine the degree of ionization and $pH$ of a $0.05 \,M$ of ammonia solution. The ionization constant of ammonia can be taken from Table $7.7 .$ Also, calculate the ionization constant of the conjugate acid of ammonia.
A weak base $MOH$ of $0.1\, N$ concentration shows a $pH$ value of $9$. What is the percentage degree of ionisation of the base ? ......$\%$