The number of common tangents to the circles ${x^2} + {y^2} - 4x - 6y - 12 = 0$ and ${x^2} + {y^2} + 6x + 18y + 26 = 0$ is
$4$
$1$
$2$
$3$
The equation of a circle passing through origin and co-axial to circles ${x^2} + {y^2} = {a^2}$ and ${x^2} + {y^2} + 2ax = 2{a^2},$ is
Choose the incorrect statement about the two circles whose equations are given below
$x^{2}+y^{2}-10 x-10 y+41=0$ and $x^{2}+y^{2}-16 x-10 y+80=0$
The circle passing through point of intersection of the circle $S = 0$ and the line $P = 0$ is
Suppose we have two circles of radius 2 each in the plane such that the distance between their centers is $2 \sqrt{3}$. The area of the region common to both circles lies between
If the two circles, $x^2 + y^2 + 2 g_1x + 2 f_1y = 0\, \& \,x^2 + y^2 + 2 g_2x + 2 f_2y = 0$ touch each then: