If the two circles, $x^2 + y^2 + 2 g_1x + 2 f_1y = 0\, \& \,x^2 + y^2 + 2 g_2x + 2 f_2y = 0$ touch each then:

  • A

    $f_1 g_1 = f_2 g_2$

  • B

    $\frac{{{f_1}}}{{{g_1}}} = \frac{{{f_2}}}{{{g_2}}}$

  • C

    $f_1 f_2 = g_1 g_2$

  • D

    none

Similar Questions

The range of values of $'a'$ such that the angle $\theta$ between the pair of tangents drawn from the point $(a, 0)$ to the circle $x^2 + y^2 = 1$ satisfies $\frac{\pi }{2} < \theta < \pi$ is :

Let $C_1$ and $C_2$ be the centres of the circles $x^2 + y^2 -2x -2y -2 = 0$ and $x^2 + y^2 - 6x-6y + 14 = 0$ respectively. If $P$ and $Q$ are the points of intersection of these circles, then the area (in sq. units) of the quadrilateral $PC_1QC_2$ is ............. $\mathrm{sq. \, units}$

  • [JEE MAIN 2019]

The number of integral values of $\lambda $ for which $x^2 + y^2 + \lambda x + (1 - \lambda )y + 5 = 0$ is the equation of a circle whose radius cannot exceed $5$ , is

A circle $\mathrm{C}$ touches the line $\mathrm{x}=2 \mathrm{y}$ at the point $(2,1)$ and intersects the circle $C_{1}: x^{2}+y^{2}+2 y-5=0$ at two points $\mathrm{P}$ and $\mathrm{Q}$ such that $\mathrm{PQ}$ is a diameter of $\mathrm{C}_{1}$. Then the diameter of $\mathrm{C}$ is :

  • [JEE MAIN 2021]

The circles $x^2 + y^2 + 2x -2y + 1 = 0$ and $x^2 + y^2 -2x -2y + 1 = 0$ touch each  other :-