The number of $p$ oints which can be expressed in the form $(p_1/q_ 1 , p_2/q_2)$, ($p_i$ and $q_i$ $(i = 1,2)$ are co-primes) and lie on the ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ is
$4$
$8$
$12$
more than $12$
The co-ordinates of the foci of the ellipse $3{x^2} + 4{y^2} - 12x - 8y + 4 = 0$ are
If the area of the auxiliary circle of the ellipse $\frac{{{x^2}}}{{{a^2}}}\, + \,\frac{{{y^2}}}{{{b^2}}}\, = \,1(a\, > \,b)$ is twice the area of the ellipse, then the eccentricity of the ellipse is
A rod of length $12 \,cm$ moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point $P$ on the rod, which is $3\, cm$ from the end in contact with the $x-$ axis.
Consider an elIipse, whose centre is at the origin and its major axis is along the $x-$ axis. If its eccentricity is $\frac{3}{5}$ and the distance between its foci is $6$, then the area (in sq. units) of the quadrilateral inscribed in the ellipse, with the vertices as the vertices of the ellipse, is
If the length of the major axis of an ellipse is three times the length of its minor axis, then its eccentricity is