The negation of the Boolean expression $ \sim \,s\, \vee \,\left( { \sim \,r\, \wedge \,s} \right)$ is equivalent to

  • [JEE MAIN 2019]
  • A

    $s\, \vee r$

  • B

    $ \sim \,s\, \wedge \, \sim \,r$

  • C

    $r$

  • D

    $s\, \wedge r$

Similar Questions

The negation of the statement $q \wedge \left( { \sim p \vee  \sim r} \right)$

The negation of the statement $(( A \wedge( B \vee C )) \Rightarrow( A \vee B )) \Rightarrow A$ is

  • [JEE MAIN 2023]

If $p$ and $q$ are simple propositions, then $p \Rightarrow q$ is false when

The contrapositive of $(p \vee q) \Rightarrow r$ is

The statement $A \rightarrow( B \rightarrow A )$ is equivalent to

  • [JEE MAIN 2021]