The negation of the Boolean expression $ \sim \,s\, \vee \,\left( { \sim \,r\, \wedge \,s} \right)$ is equivalent to
$s\, \vee r$
$ \sim \,s\, \wedge \, \sim \,r$
$r$
$s\, \wedge r$
The negation of the statement $q \wedge \left( { \sim p \vee \sim r} \right)$
The negation of the statement $(( A \wedge( B \vee C )) \Rightarrow( A \vee B )) \Rightarrow A$ is
If $p$ and $q$ are simple propositions, then $p \Rightarrow q$ is false when
The contrapositive of $(p \vee q) \Rightarrow r$ is
The statement $A \rightarrow( B \rightarrow A )$ is equivalent to