The ionization constant of $HF$, $HCOOH$ and $HCN$ at $298\, K$ are $6.8 \times 10^{-4}, 1.8 \times 10^{-4}$ and  $4.8 \times 10^{-9}$ respectively. Calculate the ionization constants of the corresponding conjugate base.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is known that,

$K_{b}=\frac{K_{w}}{K_{a}}$

Given $K_{a}$ of $HF =6.8 \times 10^{-4}$

Hence, $K_{b}$ of its conjugate base $F^{-}$

$=\frac{K_{w}}{K_{a}}$

$=\frac{10^{-14}}{6.8 \times 10^{-4}}$

$=1.5 \times 10^{-11}$

Given,

$K_{a}$ of $HCOOH =1.8 \times 10^{-4}$

Hence, $K_{b}$ of its conjugate base $HCOO ^{-}$

$=\frac{K_{w}}{K_{a}}$

$=\frac{10^{-14}}{1.8 \times 10^{-4}}$

$=5.6 \times 10^{-11}$

Given,

$K_{a}$ of $HCN =4.8 \times 10^{-9}$

Hence, $K_{b}$ of its conjugate base $CN ^{-}$

$=\frac{K_{w}}{K_{a}}$

$=\frac{10^{-14}}{4.8 \times 10^{-9}}$

$=2.08 \times 10^{-6}$

Similar Questions

The $pH$ of $ 0.1 \,M$  solution of a weak monoprotic acid  $1\%$  ionized is

The $pH$ of $0.005 \,M$ codeine $\left( C _{18} H _{21} NO _{3}\right)$ solution is $9.95 .$ Calculate its ionization constant and $p K_{ b }$

When $100 \ mL$ of $1.0 \ M \ HCl$ was mixed with $100 \ mL$ of $1.0 \ M \ NaOH$ in an insulated beaker at constant pressure, a temperature increase of $5.7^{\circ} C$ was measured for the beaker and its contents (Expt. $1$). Because the enthalpy of neutralization of a strong acid with a strong base is a constant $\left(-57.0 \ kJ \ mol ^{-1}\right)$, this experiment could be used to measure the calorimeter constant. In a second experiment (Expt. $2$), $100 \ mL$ of $2.0 \ M$ acetic acid $\left(K_a=2.0 \times 10^{-5}\right)$ was mixed with $100 \ mL$ of $1.0 M \ NaOH$ (under identical conditions to Expt. $1$) where a temperature rise of $5.6^{\circ} C$ was measured.

(Consider heat capacity of all solutions as $4.2 J g ^{-1} K ^{-1}$ and density of all solutions as $1.0 \ g mL ^{-1}$ )

$1.$ Enthalpy of dissociation (in $kJ mol ^{-1}$ ) of acetic acid obtained from the Expt. $2$ is

$(A)$ $1.0$ $(B)$ $10.0$ $(C)$ $24.5$ $(D)$ $51.4$

$2.$ The $pH$ of the solution after Expt. $2$ is

$(A)$ $2.8$ $(B)$ $4.7$ $(C)$ $5.0$ $(D)$ $7.0$

Give the answer question $1$ and $2.$

  • [IIT 2015]

The degree of dissociation of $0.1\,M\,HCN$ solution is $0.01\%$ . Its ionisation constant would be

Which oxychloride has maximum $pH$