The geometric series $a + ar + ar^2 + ar^3 +..... \infty$ has sum $7$ and the terms involving odd powers of $r$ has sum $'3'$, then the value of $(a^2 -r^2)$ is -

  • A

    $\frac{5}{4}$

  • B

    $\frac{5}{2}$

  • C

    $\frac{25}{4}$

  • D

    $5$

Similar Questions

Let $S_1$ be the sum of areas of the squares whose sides are parallel to coordinate axes. Let $S_2$ be the sum of areas of the slanted squares as shown in the figure. Then, $\frac{S_1}{S_2}$ is equal to

  • [KVPY 2016]

If $2^{10}+2^{9} \cdot 3^{1}+28 \cdot 3^{2}+\ldots+2 \cdot 3^{9}+3^{10}=S -211$ then $S$ is equal to

  • [JEE MAIN 2020]

The value of ${4^{1/3}}{.4^{1/9}}{.4^{1/27}}...........\infty $ is

Let $x _{1}, x _{2}, x _{3}, \ldots ., x _{20}$ be in geometric progression with $x_{1}=3$ and the common ration $\frac{1}{2}$. A new data is constructed replacing each $x_{i}$ by $\left(x_{i}-i\right)^{2}$. If $\bar{x}$ is the mean of new data, then the greatest integer less than or equal to $\bar{x}$ is $.....$

  • [JEE MAIN 2022]

If the ${4^{th}},\;{7^{th}}$ and ${10^{th}}$ terms of a $G.P.$ be $a,\;b,\;c$ respectively, then the relation between $a,\;b,\;c$ is