The force $F$ acting on a body moving in a circle of radius $r$ is always perpendicular to  the instantaneous velocity $v$. The work done by the force on the body in one complete  rotation is : 

  • A

    $Fv$

  • B

    $F.2 \pi r$

  • C

    $Fr$

  • D

    $0$

Similar Questions

Two blocks $A$ and $B$ of masses $1\, kg$ and $2\, kg$ are connected together by a  spring and are resting on a horizontal surface. The blocks are pulled apart so as to strech  the spring and then released. The ratio of $K.E.s$ of both the blocks is

A body of mass $2\, kg$ slides down a curved track which is quadrant of a circle of radius $1$ $meter$ as shown in figure. All the surfaces are frictionless. If the body starts from rest, its speed at the bottom of the track is ............. $\mathrm{m}/ \mathrm{s}$

A particle moves under the effect of a force $F = cx$ from $x = 0$ to $x = x_1$. The work done in the process is

A particle moves along the $x-$ axis from $x = 0$ to $x = 5\,m$ under the influence of a force $F$ (in $N$ ) given by $F = 3x^2 -2x + 7$ . Calculate the work done by this force .............. $\mathrm{J}$

The kinetic energy acquired by a body of mass m is travelling some distance s, starting from rest under the actions of a constant force, is directly proportional to