Let $A = \{1, 2, 3\}$. The total number of distinct relations that can be defined over $A$ is
Let $R$ be a relation from $N$ to $N$ defined by $R =\left\{(a, b): a, b \in N \text { and } a=b^{2}\right\} .$ Are the following true?
$(a, b) \in R,$ implies $(b, a) \in R$
Let $A=\{1,2,3,4,5,6\} .$ Define a relation $R$ from $A$ to $A$ by $R=\{(x, y): y=x+1\}$
Write down the domain, codomain and range of $R .$
Let $A=\{x, y, z\}$ and $B=\{1,2\} .$ Find the number of relations from $A$ to $B$.
Let $R$ be a relation from $Q$ to $Q$ defined by $R=\{(a, b): a, b \in Q$ and $a-b \in Z \} .$ Show that
$(a, b) \in R$ implies that $(b, a) \in R$