The equations of the common tangents to the ellipse, $ x^2 + 4y^2 = 8 $ $\&$  the parabola $y^2 = 4x$  can be

  • A

    $x + 2y + 4 = 0$

  • B

    $x - 2y + 4 = 0$

  • C

    $2x + y - 4 = 0$

  • D

    both $(A)$ and $(B)$

Similar Questions

A common tangent to $9x^2 + 16y^2 = 144 ; y^2 - x + 4 = 0 \,\,\&\,\, x^2 + y^2 - 12x + 32 = 0$ is :

In an ellipse, the distance between its foci is $6$ and minor axis is $8.$ Then its eccentricity is :

If $P \equiv (x,\;y)$, ${F_1} \equiv (3,\;0)$, ${F_2} \equiv ( - 3,\;0)$ and $16{x^2} + 25{y^2} = 400$, then $P{F_1} + P{F_2}$ equals

  • [IIT 1998]

If $F_1$ and $F_2$ be the feet of the perpendicular from the foci $S_1$ and $S_2$ of an ellipse $\frac{{{x^2}}}{5} + \frac{{{y^2}}}{3} = 1$ on the tangent at any point $P$ on the ellipse, then $(S_1 F_1) (S_2 F_2)$ is equal to

The angle of intersection of ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ and circle ${x^2} + {y^2} = ab$, is