The equation of a wave is given by$Y = A\sin \omega \left( {\frac{x}{v} - k} \right)$where $\omega $ is the angular velocity and $v$ is the linear velocity. The dimension of $k$ is
$LT$
$T$
${T^{ - 1}}$
${T^2}$
The force $F$ is given in terms of time $t$ and displacement $x$ by the equation $F = A\,cos\,Bx + C\,sin\,Dt.$ The dimensional formulae of $D/B$ is
$M{L^{ - 1}}{T^{ - 2}}$ represents
Let $[{\varepsilon _0}]$ denotes the dimensional formula of the permittivity of the vacuum and $[{\mu _0}]$ that of the permeability of the vacuum. If $M = {\rm{mass}}$, $L = {\rm{length}}$, $T = {\rm{Time}}$ and $I = {\rm{electric current}}$, then
The mass of a liquid flowing per second per unit area of cross section of a tube is proportional to $P^x$ and $v^y$ , where $P$ is the pressure difference and $v$ is the velocity. Then, the relation between $x$ and $y$ is