The equation of a stationary wave is $Y = 10\,\sin \,\frac{{\pi x}}{4}\,\cos \,20\,\pi t$. The distance between two consecutive nodes in metres is

  • A

    $4$

  • B

    $2$

  • C

    $5$

  • D

    $8$

Similar Questions

A set of $24$ tunning fork is arranged in a series of increasing frequencies. If each fork gives $4\, beats/second$ with the preceeding one and frequency of last tunning fork is two times of first fork. Find frequency of $5^{th}$ tunning fork  .... $Hz$

A car $P$ approaching a crossing at a speed of $10\, m/s$ sounds a horn of frequency $700\, Hz$ when $40\, m$ in front of the crossing. Speed of sound in air is $340\, m/s$. Another car $Q$ is at rest on a road which is perpendicular to the road on which car $P$ is reaching the crossing (see figure). The driver of car $Q$ hears the sound of the horn of car $P$ when he is $30\, m$ in front of the crossing. The apparent frequency heard by the driver of car $Q$ is ...... $Hz$

A transverse wave is passing through a stretched string with a speed of $20\  m/s$ . The tension in the string is $20\ N$ . At a certain point $P$ on the string, it is observed that energy is being transferred at a rate of $40\ mW$ at a given instant. Find the speed of point $P$

Two pipes are each $50\,cm$ in length. One of them is closed at one end while the other is  both ends. The speed of sound in air is $340\,ms^{-1}.$ The frequency at which both the pipes can resonate is

Equation of a plane progressive wave is given by $y = 0.6\sin 2\pi \left( {t - \frac{x}{2}} \right)$. On reflection from a denser medium its amplitude becomes $2/3$ of the amplitude of the incident wave. The equation of the reflected wave is