A set of $24$ tunning fork is arranged in a series of increasing frequencies. If each fork gives $4\, beats/second$ with the preceeding one and frequency of last tunning fork is two times of first fork. Find frequency of $5^{th}$ tunning fork .... $Hz$
$46$
$184$
$92$
$108$
A flute which we treat as a pipe open at both ends is $34\, cm$ along. The fundamental frequency of the flute when all its holes are covered is .... $Hz$ [Take velocity of sound in air $= 340\, m/s$ ]
The amplitude of a wave disturbance propagating in the positive $X-$ direction is given by $y = 1/(1 + x^2)$ at time $t = 0$ and by $y = 1/[1 + (x -1)^2]$ at $t = 2$ seconds, where $x$ and $y$ are in metres. The shape of the wave disturbance does not change during the propagation. The velocity of the wave is ..... $ms^{-1}$
A man fires a bullet standing between two cliffs. First echo is heard after $3\, seconds$ and second echo is heard after $5\, seconds$. If the velocity of sound is $330\,m/s$, then the distance between the cliffs is .... $m$
A string of mass $2.5\, kg$ under some tension. The length of the stretched string is $20\, m$. If the transverse jerk produced at one end of the string takes $0.5\, s$ to reach the other end, tension in the string is .... $N$
Two waves of sound having intensities $I$ and $4I$ interfere to produce interference pattern. The phase difference between the waves is $\pi /2$ at point $A$ and $\pi$ at point $B$. Then the difference between the resultant intensities at $A$ and $B$ is