The energy stored in the electric field produced by a metal sphere is $4.5\, J$. lf the sphere contains $4\,\mu C$ charge, its radius will be.......$mm$ : [Take : $\frac{1}{{4\pi {\varepsilon _0}}} = 9 \times {10^9}\,N - {m^2}\,/{C^2}\, ]$
$20$
$32$
$28$
$16$
A battery is used to charge a parallel plate capacitor till the potential difference between the plates becomes equal to the electromotive force of the battery. The ratio of the energy stored in the capacitor and the work done by the battery will be
Two identical capacitors have same capacitance $C$. One of them is charged to the potential $\mathrm{V}$ and other to the potential $2 \mathrm{~V}$. The negative ends of both are connected together. When the positive ends are also joined together, the decrease in energy of the combined system is :
A parallel plate capacitor whose capacitance $C$ is $14\, pF$ is charged by a battery to a potential difference $V =12\, V$ between its plates. The charging battery is now disconnected and a porcelin plate with $k =7$ is inserted between the plates, then the plate would oscillate back and forth between the plates with a constant mechanical energy of $..........pJ$. (Assume no friction)
A $5.0\, \mu F$ capacitor is charged to a potential difference $800\, V$ and discharged through a conductor. The energy(in $J$) given to a conductor during the discharge is
Two Identical capacttors $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ of equal capacitance are connected as shown in the circult. Terminals $a$ and $b$ of the key $k$ are connected to charge capacitor $\mathrm{C}_{1}$ using battery of $emf \;V\; volt$. Now disconnecting $a$ and $b$ the terminals $b$ and $c$ are connected. Due to this, what will be the percentage loss of energy?.....$\%$