The electrostatic force $\left(\vec{F}_1\right)$ and magnetic force $\left(\vec{F}_2\right)$ acting on a charge $q$ moving with velocity $v$ can be written :

  • [JEE MAIN 2024]
  • A

    $\vec{F}_1=q \vec{V} \cdot \vec{E}, \vec{F}_2=q(\vec{B} \cdot \vec{V})$

  • B

    $\overrightarrow{\mathrm{F}}_1=\mathrm{q} \overrightarrow{\mathrm{B}}, \overrightarrow{\mathrm{F}}_2=\mathrm{q}(\overrightarrow{\mathrm{B}} \times \overrightarrow{\mathrm{V}})$

  • C

    $\overrightarrow{\mathrm{F}}_1=\mathrm{q} \overrightarrow{\mathrm{E}}, \overrightarrow{\mathrm{F}}_2=\mathrm{q}(\overrightarrow{\mathrm{V}} \times \overrightarrow{\mathrm{B}})$

  • D

Similar Questions

A charged particle moves in a uniform magnetic field. The velocity of the particle at some instant makes an acute angle with the magnetic field. The path of the particle will be

Two charged particles of mass $m$ and charge $q$ each are projected from origin simultaneously with same speed $V$ in transverse magnetic field. If ${\vec r_1}$ and ${\vec r_2}$ are the position vectors of particles (with respect to origin) at $t = \frac{{\pi m}}{{qB}}$ then the value of  ${\vec r_1}.{\vec r_2}$ at that time is

Two charged particles traverse identical helical paths in a completely opposite sense in a uniform magnetic field $B$ = $B_0\hat{k}$

A particle of mass $m = 1.67 \times 10^{-27}\, kg$ and charge $q = 1.6 \times 10^{-19} \, C$ enters a region of uniform magnetic field of strength $1$ $tesla$ along the direction shown in the figure. If the direction of the magnetic field is along the outward normal to the plane of the paper, then the time spent by the particle in the region of the magnetic field after entering it at $C$ is nearly :-......$ns$

The radius of curvature of the path of a charged particle moving in a static uniform magnetic field is