The diagrams below show regions of equipotentials.A positive charge is moved from $A$ to $B$ in each diagram.
In all the four cases the work done is the same.
Minimum work is required to move $q$ in figure $(I).$
Maximum work is required to move $q$ in figure $(II).$
Maximum work is required to move $q$ in figure $(III).$
Figure shows a set of equipotential surfaces. The magnitude and direction of electric field that exists in the region is .........
Write the characteristics of equipotential surface.
Define an equipotential surface.
$S_1$ and $S_2$ are two equipotential surfaces on which the potentials are not equal. Which of the statement is incorrect ?
A uniform electric field pointing in positive $x$-direction exists in a region. Let $A$ be the origin, $B$ be the point on the $x$-axis at $x = + 1$ $cm$ and $C$ be the point on the $y$-axis at $y = + 1\,cm$. Then the potentials at the points $A$, $B$ and $C$ satisfy