The dependence of acceleration due to gravity $'g'$ on the distance $'r'$ from the centre of the earth, assumed to be a sphere of radius $R$ of uniform density is as shown in figure below
The change in the value of $g$ at a height $h$ above the surface of the earth is the same as at a depth $d$ below the surface of earth. When both $d$ and $h$ are much smaller than the radius of earth, then which one of the following is correct ?
At what height above the earth's surface is the value of $'g'$ is same as in a $200\, km$ deep mine ........ $km$
If $g$ is the acceleration due to gravity on the earth's surface, the gain in the potential energy of an object of mass $m$ raised from the surface of the earth to a height equal to the radius $R$ of the earth, is
Figure shows the variation of the gravitatioal acceleration $a_g$ of four planets with the radial distance $r$ from the centre ofthe planet for $r \ge $ radius of the planet. Plots $1$ and $2$ coincide for $r \ge {R_2}$ and plots $3$ and $4$ coincide for $r \ge {R_4}$ . The sequence of the planets in the descending order of their densities is
Figure shows the variation of the gravitatioal acceleration $a_g$ of four planets with the radial distance $r$ from the centre of the planet for $r\geq $ radius of the planet. Plots $1$ and $2$ coincide for $r\geq R_2$ and plots $3$ and $4$ coincide for $r \geq R_4$. The sequence of the planets in the descending order of their densities is