The converse of the statement "If $p < q$, then $p -x < q -x"$ is -
If $p < q,$ then $p -x > q -x$
If $p > q$, then $p -x > q -x$
If $p -x > q -x,$ then $p > q$
If $p -x < q -x,$ then $p < q$
Statement $\quad(P \Rightarrow Q) \wedge(R \Rightarrow Q)$ is logically equivalent to
If $p$ : It rains today, $q$ : I go to school, $r$ : I shall meet any friends and $s$ : I shall go for a movie, then which of the following is the proposition : If it does not rain or if I do not go to school, then I shall meet my friend and go for a movie.
Let $\Delta, \nabla \in\{\wedge, \vee\}$ be such that $p \nabla q \Rightarrow(( p \nabla$q) $\nabla r$ ) is a tautology. Then (p $\nabla q ) \Delta r$ is logically equivalent to
The Statement that is $TRUE$ among the following is
Statement $-1$ : $ \sim \left( {p \leftrightarrow \, \sim q} \right)$ is equivalent to $p \leftrightarrow q$
Statement $-2$ : $ \sim \left( {p \leftrightarrow \, \sim q} \right)$ is a tautology.