The contrapositive of the following statement, "If the side of a square doubles, then its area increases four times", is
If the area of a square increases four times, then its side is not doubled.
If the area of a square increases four times, then its side is doubled
If the area of a square does not increases four times, then its side is not doubled
If the side of a square is not doubled, then its area does not increase four times
If $p \to ( \sim p\,\, \vee \, \sim q)$ is false, then the truth values of $p$ and $q$ are respectively .
The contrapositive of the statement "If you will work, you will earn money" is ..... .
If $\left( {p \wedge \sim q} \right) \wedge \left( {p \wedge r} \right) \to \sim p \vee q$ is false, then the truth values of $p, q$ and $r$ are respectively
Statement $-1$ : $ \sim \left( {p \leftrightarrow \, \sim q} \right)$ is equivalent to $p \leftrightarrow q$
Statement $-2$ : $ \sim \left( {p \leftrightarrow \, \sim q} \right)$ is a tautology.
Let $p , q , r$ be three logical statements. Consider the compound statements $S _{1}:((\sim p ) \vee q ) \vee((\sim p ) \vee r ) \text { and }$ and $S _{2}: p \rightarrow( q \vee r )$ Then, which of the following is NOT true$?$