The components of $\vec a = 2\hat i + 3\hat j$ along the direction of vector $\left( {\hat i + \hat j} \right)$ is

  • A

    $\left( {\hat i + \hat j} \right)$

  • B

    $\frac{1}{{2\,}}\,\left( {\hat i + \hat j} \right)$

  • C

    $\frac{5}{\sqrt{2}}\,\left( {\hat i + \hat j} \right)$

  • D

    $\frac{5}{\sqrt{2}}\,\left( {\hat i - \hat j} \right)$

Similar Questions

What is the product of two vectors if they are parallel or antiparallel ? 

If $\overrightarrow {\rm A} = 2\hat i + 3\hat j - \hat k$ and $\overrightarrow B = - \hat i + 3\hat j + 4\hat k$ a unit vector perpendicular to both $\overrightarrow A $ and $\overrightarrow B $ will be

Explain the geometrical interpretation of scalar product of two vectors.

The area of the triangle formed by $2\hat i + \hat j - \hat k$ and $\hat i + \hat j + \hat k$ is

Projection of vector $\vec A$ on $\vec B$ is