The $pH$ of $0.1\, M$ monobasic acid is $4.50$ Calculate the concentration of species $H ^{+},$ $A^{-}$ and $HA$ at equilibrium. Also, determine the value of $K_{a}$ and $pK _{a}$ of the monobasic acid.
$pH =-\log \left[ H ^{+}\right]$
Therefore, $\left[ H ^{+}\right]=10^{- pH } =10^{-4.50} $
$=3.16 \times 10^{-5} $
$\left[ H ^{+}\right]=\left[ A ^{-}\right]=3.16 \times 10^{-5}$
Thus, $K_{ a }=\left[ H ^{+}\right]\left[ A ^{-}\right] /[ HA ]$
${[HA]_{eqlbm}} = 0.1 - \left( {3.16 \times {{10}^{ - 5}}} \right) \simeq 0.1$
$K_{ a }=\left(3.16 \times 10^{-5}\right)^{2} / 0.1=1.0 \times 10^{-8}$
$p K_{ a }=-\log \left(10^{-8}\right)=8$
Alternatively, "Percent dissociation" is another useful method for measure of strength of a weak acid and is given as:
Percent dissociation
$ = {[HA]_{{\rm{dissociated }}}}/{[HA]_{{\rm{initial }}}} \times 100\% \,\,\,\,\,\,\left( {7.32} \right)$
The $pH$ of $0.004 \,M$ hydrazine solution is $9.7 .$ Calculate its ionization constant $K_{ b }$ and $pK _{ b }$
${K_{C{H_3}COOH}} = 1.9 \times {10^{ - 5}}$. Calculate $pH$ at end point in titration of $0.1$ $M$ $C{H_3}COOH$ and $0.1$ $M$ $NaOH$.
Derive ${K_w} = {K_a} \times {K_b}$ and ${K_w} = p{K_a} \times p{K_b}$ for weak base $B$ and its conjugate acid ${B{H^ + }}$.
The degree of dissociation of $0.1\,M\,HCN$ solution is $0.01\%$ . Its ionisation constant would be
A weak base $MOH$ of $0.1\, N$ concentration shows a $pH$ value of $9$. What is the percentage degree of ionisation of the base ? ......$\%$