The ${4^{th}}$ term of a $G.P.$ is square of its second term, and the first term is $-3$ Determine its $7^{\text {th }}$ term.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $a$ be the first term and $r$ be the common ratio of the $G.P. $

$\therefore a=-3$

It is known that, $a_{n}=a r^{n-1}$

$\therefore a_{4}=a r^{3}=(-3) r^{3}$

$a_{2}=a r^{2}=(-3) r$

According to the given condition,

$(-3) r^{3}=[(-3) r]^{2}$

$\Rightarrow-3 r^{3}=9 r^{2} \Rightarrow r=-3 a_{7}=a r^{7-1}=a r^{6}=(-3)(-3)^{6}=-(3)^{7}=-2187$

Thus, the seventh term of the $G.P.$ is $-2187 .$

Similar Questions

If the $4^{\text {th }}, 10^{\text {th }}$ and $16^{\text {th }}$ terms of a $G.P.$ are $x, y$ and $z,$ respectively. Prove that $x,$ $y, z$ are in $G.P.$

The number of bacteria in a certain culture doubles every hour. If there were $30$ bacteria present in the culture originally, how many bacteria will be present at the end of $2^{\text {nd }}$ hour, $4^{\text {th }}$ hour and $n^{\text {th }}$ hour $?$

If $a,\;b,\;c$ are in $A.P.$, $b,\;c,\;d$ are in $G.P.$ and $c,\;d,\;e$ are in $H.P.$, then $a,\;c,\;e$ are in

Three numbers are in $G.P.$ such that their sum is $38$ and their product is $1728$. The greatest number among them is

The sum of the series $5.05 + 1.212 + 0.29088 + ...\,\infty $ is