Sometimes it is convenient to construct a system of units so that all quantities can be expressed in terms of only one physical quantity. In one such system, dimensions of different quantities are given in terms of a quantity $X$ as follows: [position $]=\left[X^\alpha\right] ;[$ speed $]=\left[X^\beta\right]$; [acceleration $]=\left[X^{ p }\right]$; [linear momentum $]=\left[X^{ q }\right]$; [force $]=\left[X^{ I }\right]$. Then -
$(A)$ $\alpha+p=2 \beta$
$(B)$ $p+q-r=\beta$
$(C)$ $p-q+r=\alpha$
$(D)$ $p+q+r=\beta$
$A,B$
$A,C$
$A,D$
$B,C$
Even if a physical quantity depends upon three quantities, out of which two are dimensionally same, then the formula cannot be derived by the method of dimensions. This statement
$\left(P+\frac{a}{V^2}\right)(V-b)=R T$ represents the equation of state of some gases. Where $P$ is the pressure, $V$ is the volume, $T$ is the temperature and $a, b, R$ are the constants. The physical quantity, which has dimensional formula as that of $\frac{b^2}{a}$, will be
The entropy of any system is given by
${S}=\alpha^{2} \beta \ln \left[\frac{\mu {kR}}{J \beta^{2}}+3\right]$
Where $\alpha$ and $\beta$ are the constants. $\mu, J, K$ and $R$ are no. of moles, mechanical equivalent of heat, Boltzmann constant and gas constant repectively. [Take ${S}=\frac{{dQ}}{{T}}$ ]
Choose the incorrect option from the following:
Planck's constant $h$, speed of light $c$ and gravitational constant $G$ are used to form a unit of length $L$ and a unit of mass $M$. Then the correct option$(s)$ is(are)
$(A)$ $M \propto \sqrt{ c }$ $(B)$ $M \propto \sqrt{ G }$ $(C)$ $L \propto \sqrt{ h }$ $(D)$ $L \propto \sqrt{G}$