If $x=7-4 \sqrt{3},$ then find the value of $x^{2}+\frac{1}{x^{2}}$
Rationalise the denominator in each of the following and hence evaluate by taking $\sqrt{2}=1.414, \sqrt{3}=1.732$ and $\sqrt{5}=2.236,$ upto three places of decimal.
$\frac{\sqrt{2}}{2+\sqrt{2}}$
If $125^{x}=\frac{25}{5^{x}},$ then find the value of $x$.
Simplify: $\left[5\left(8^{\frac{1}{3}}+27^{\frac{1}{3}}\right)^{3}\right]^{\frac{1}{4}}$
Fill in the blanks so as to make each of the following statements true (Final answer only)
$\sqrt[11]{1}=\ldots \ldots$