Show that the products of the corresponding terms of the sequences $a,$ $ar,$ $a r^{2},$ $......a r^{n-1}$ and $A, A R, A R^{2}, \ldots, A R^{n-1}$ form a $G .P.,$ and find the common ratio.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It has to be proved that the sequence: $a A, a r A R, a r^{2} A R^{2}, \ldots \ldots a r^{n-1} A R^{n-1},$ forms a $G.P.$

$\frac{{{\rm{ Second}}\,\,{\rm{term }}}}{{{\rm{ First }}\,\,{\rm{term }}}} = \frac{{ar\,AR}}{{a\,A}} = rR$

$\frac{{{\rm{ Third}}\,\,{\rm{ tem }}}}{{{\rm{ Second }}\,\,{\rm{term }}}} = \frac{{a{r^2}\,A{R^2}}}{{ar\,AR}} = rR$

Thus, the above sequence forms a $G.P.$ and the common ratio is $rR.$

Similar Questions

The $G.M.$ of the numbers $3,\,{3^2},\,{3^3},....,\,{3^n}$ is

The value of ${4^{1/3}}{.4^{1/9}}{.4^{1/27}}...........\infty $ is

If $a,\;b,\;c$ are in $A.P.$, then ${3^a},\;{3^b},\;{3^c}$ shall be in

The number of bacteria in a certain culture doubles every hour. If there were $30$ bacteria present in the culture originally, how many bacteria will be present at the end of $2^{\text {nd }}$ hour, $4^{\text {th }}$ hour and $n^{\text {th }}$ hour $?$

If in an infinite $G.P.$ first term is equal to the twice of the sum of the remaining terms, then its common ratio is