Pulley and spring are massless and the friction is absent everwhere. $5\,kg$ block is released from rest. The speed of $5\,kg$ block when $2\,kg$ block leaves the contact with ground is (take force constant of the spring $K = 40\,N/m$ and $g = 10\,m/s^2$ )

817-1035

  • A

    $\sqrt 2\,m/s$

  • B

    $2\sqrt 2\,m/s$

  • C

    $2\,m/s$

  • D

    $4\sqrt 2\,m/s$

Similar Questions

A mass $m$ moving horizontally with velocity $v_0$ strikes a pendulum of mass $m$. If the two masses stick together after the collision, then the maximum height reached by the pendulum is

A body of mass $2\, kg$ slides down a curved track which is quadrant of a circle of radius $1$ metre. All the surfaces are frictionless. If the body starts from rest, its speed at the bottom of the track is ..............  $\mathrm{m} / \mathrm{s}$

Answer the following :

$(a)$ The casing of a rocket in flight burns up due to friction. At whose expense is the heat energy required for burning obtained? The rocket or the atmosphere?

$(b)$ Comets move around the sun in highly elliptical orbits. The gravitational force on the comet due to the sun is not normal to the comet’s velocity in general. Yet the work done by the gravitational force over every complete orbit of the comet is zero. Why ?

$(c)$ An artificial satellite orbiting the earth in very thin atmosphere loses its energy gradually due to dissipation against atmospheric resistance, however small. Why then does its speed increase progressively as it comes closer and closer to the earth ?

$(d)$ In Figure $(i)$ the man walks $2\; m$ carrying a mass of $15\; kg$ on his hands. In Figure $(ii)$, he walks the same distance pulling the rope behind him. The rope goes over a pulley, and a mass of $15\; kg$ hangs at its other end. In which case is the work done greater ?

$2$ particles of mass $1\,Kg$ and $5\,kg$ have same momentum, calculate ratio of their $K.E.$

A vertical spring with force constant $K$ is fixed on a table. A ball of mass $m$ at a height $h$ above the free upper end of the spring falls vertically on the spring so that the spring is compressed by a distance $d$. The net work done in the process is