Projection of vector $\vec A$ on $\vec B$ is

  • A

    $\mathop A\limits^ \to .\mathop B\limits^ \to $

  • B

    $\mathop A\limits^ \to .\hat B$

  • C

    $\mathop B\limits^ \to .\mathop A\limits^ \to $

  • D

    $\hat A.\hat B$

Similar Questions

The angle between vectors $(\overrightarrow {\rm{A}} \times \overrightarrow {\rm{B}} )$ and $(\overrightarrow {\rm{B}} \times \overrightarrow {\rm{A}} )$ is

State with reasons, whether the following algebraic operations with scalar and vector physical quantities are meaningful :
$(a)$ adding any two scalars,
$(b)$ adding a scalar to a vector of the same dimensions ,
$(c)$ multiplying any vector by any scalar,
$(d)$ multiplying any two scalars,
$(e)$ adding any two vectors,
$(f)$ adding a component of a vector to the same vector.

For three vectors $\vec{A}=(-x \hat{i}-6 \hat{j}-2 \hat{k})$, $\vec{B}=(-\hat{i}+4 \hat{j}+3 \hat{k})$ and $\vec{C}=(-8 \hat{i}-\hat{j}+3 \hat{k})$, if $\overrightarrow{\mathrm{A}} \cdot(\overrightarrow{\mathrm{B}} \times \overrightarrow{\mathrm{C}})=0$, them value of $\mathrm{x}$ is. . . . . .. 

  • [JEE MAIN 2024]

If $\vec A$ and $\vec B$ are perpendicular vectors and vector $\vec A = 5\hat i + 7\hat j - 3\hat k$ and $\vec B = 2\hat i + 2\hat j - a\hat k.$ The value of $a$ is

Let $\left| {{{\vec A}_1}} \right| = 3,\,\left| {\vec A_2} \right| = 5$, and $\left| {{{\vec A}_1} + {{\vec A}_2}} \right| = 5$. The value of $\left( {2{{\vec A}_1} + 3{{\vec A}_2}} \right)\cdot \left( {3{{\vec A}_1} - 2{{\vec A}_2}} \right)$ is

  • [JEE MAIN 2019]