One root of the equation $\cos x - x + \frac{1}{2} = 0$ lies in the interval

  • A

    $\left( {0,\frac{\pi }{2}} \right)$

  • B

    $\left( { - \frac{\pi }{2},0} \right)$

  • C

    $\left( { \frac{\pi }{2},\pi } \right)$

  • D

    $\left( {\pi ,\frac{{3\pi }}{2}} \right)$

Similar Questions

If $1 + \sin x + {\sin ^2}x + .....$ to $\infty = 4 + 2\sqrt 3 ,\,0 < x < \pi ,$ then

If $\frac{{1 - {{\tan }^2}\theta }}{{{{\sec }^2}\theta }} = \frac{1}{2}$, then the general value of $\theta $ is

If $\tan \theta + \tan 2\theta + \sqrt 3 \tan \theta \tan 2\theta = \sqrt 3 ,$ then

If ${\sin ^2}\theta - 2\cos \theta + \frac{1}{4} = 0,$ then the general value of $\theta $ is

The most general value of $\theta $ which will satisfy both the equations $\sin \theta = - \frac{1}{2}$ and $\tan \theta = \frac{1}{{\sqrt 3 }}$ is