Number of solution of the equation $ 3tanx + x^3 = 2 $ in $ \left( {0,\frac{\pi }{4}} \right)$ is
$0$
$1$
$2$
$3$
In the mean value theorem, $f(b) - f(a) = (b - a)f'(c) $ if $a = 4$, $b = 9$ and $f(x) = \sqrt x $ then the value of $c$ is
The number of points, where the curve $y=x^5-20 x^3+50 x+2$ crosses the $x$-axis, is $............$.
If $f: \mathrm{R} \rightarrow \mathrm{R}$ is a twice differentiable function such that $f^{\prime \prime}(x)>0$ for all $x \in \mathrm{R}$, and $f\left(\frac{1}{2}\right)=\frac{1}{2}, f(1)=1$, then
The value of $c$ in the Lagrange's mean value theorem for the function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-4 \mathrm{x}^{2}+8 \mathrm{x}+11$ when $\mathrm{x} \in[0,1]$ is
If the equation
${a_n}{x^{n - 1}} + \,{a_{n - 1}}{x^{n - 1}} + \,......\, + \,{a_1}x = 0,\,{a_1} \ne 0,n\, \geqslant \,2,$
has a positive root $x= \alpha ,$ then the equation
$n{a_n}{x^{n - 1}} + \,(n - 1){a_{n - 1}}{x^{n - 1}} + \,......\, + \,{a_1} = 0$
has a positive root which is