Let the system of linear equations  $x+y+k z=2$ ;  $2 x+3 y-z=1$ ; $3 x+4 y+2 z=k$ , have infinitely many solutions. Then the system $( k +1) x +(2 k -1) y =7$ ; $(2 k +1) x +( k +5) y =10 \text { has : }$

  • [JEE MAIN 2023]
  • A

    infinitely many solutions

  • B

    unique solution satisfying $x-y=1$

  • C

    no solution

  • D

    unique solution satisfying $x+y=1$

Similar Questions

Value of $\left| {\begin{array}{*{20}{c}}
  0&{x - y}&{x - z} \\ 
  {y - x}&0&{y - z} \\ 
  {z - x}&{z - y}&0 
\end{array}} \right|$ is

The system of equations $\lambda x + y + z = 0,$ $ - x + \lambda y + z = 0,$ $ - x - y + \lambda z = 0$, will have a non zero solution if real values of $\lambda $ are given by

  • [IIT 1984]

The determinant $\left| {\,\begin{array}{*{20}{c}}a&b&{a - b}\\b&c&{b - c}\\2&1&0\end{array}\,} \right|$ is equal to zero if $a,b,c$ are in

If $x = a + 2b$ satisfies the cubic $(a, b\in R)$ $f (x)=$ $\left| {\,\begin{array}{*{20}{c}}{a - x}&b&b\\b&{a - x}&b\\b&b&{a - x}\end{array}\,} \right|$ $= 0$, then its other two roots are

If $\left| {\,\begin{array}{*{20}{c}}{ - {a^2}}&{ab}&{ac}\\{ab}&{ - {b^2}}&{bc}\\{ac}&{bc}&{ - {c^2}}\end{array}\,} \right| = K{a^2}{b^2}{c^2},$ then $K = $