Let $A = \{1, 2, 3, 4\}$ and let $R= \{(2, 2), (3, 3), (4, 4), (1, 2)\}$ be a relation on $A$. Then $R$ is
Reflexive
Symmetric
Transitive
None of these
Let $R = \{ (3,\,3),\;(6,\;6),\;(9,\,9),\;(12,\,12),\;(6,\,12),\;(3,\,9),(3,\,12),\,(3,\,6)\} $ be a relation on the set $A = \{ 3,\,6,\,9,\,12\} $. The relation is
Let $L$ denote the set of all straight lines in a plane. Let a relation $R$ be defined by $\alpha R\beta \Leftrightarrow \alpha \bot \beta ,\,\alpha ,\,\beta \in L$. Then $R$ is
Show that the relation $R$ in the set $A=\{1,2,3,4,5\}$ given by $R =\{(a, b):|a-b|$ is even $\},$ is an equivalence relation. Show that all the elements of $\{1,3,5\}$ are related to each other and all the elements of $ \{2,4\}$ are
Maximum number of equivalence relations on set $A = \{1, 2, 3, 4\}$ is $N$, then -
Give an example of a relation. Which is Reflexive and symmetric but not transitive.