Let $S = \{ 0,\,1,\,5,\,4,\,7\} $. Then the total number of subsets of $S$ is
$64$
$32$
$40$
$20$
Match each of the set on the left in the roster form with the same set on the right described in set-builder form:
$(i)$ $\{1,2,3,6\}$ | $(a)$ $\{ x:x$ is a prime number and a divisor $6\} $ |
$(ii)$ $\{2,3\}$ | $(b)$ $\{ x:x$ is an odd natural number less than $10\} $ |
$(iii)$ $\{ M , A , T , H , E , I , C , S \}$ | $(c)$ $\{ x:x$ is natural number and divisor of $6\} $ |
$(iv)$ $\{1,3,5,7,9\}$ | $(d)$ $\{ x:x$ a letter of the work $\mathrm{MATHEMATICS}\} $ |
Write the following sets in the set-builder form :
$\{ 1,4,9 \ldots 100\} $
Given the sets $A=\{1,3,5\}, B=\{2,4,6\}$ and $C=\{0,2,4,6,8\},$ which of the following may be considered as universal set $(s)$ for all the three sets $A$, $B$ and $C$
$\{ 1,2,3,4,5,6,7,8\} $
Consider the sets
$\phi, A=\{1,3\}, B=\{1,5,9\}, C=\{1,3,5,7,9\}$
Insert the symbol $\subset$ or $ \not\subset $ between each of the following pair of sets:
$B \ldots \cdot C$
Which of the following are examples of the null set
Set of odd natural numbers divisible by $2$