Let $f\,:\,R \to R$ be a function such that $f\left( x \right) = {x^3} + {x^2}f'\left( 1 \right) + xf''\left( 2 \right) + f'''\left( 3 \right)$, $x \in R$. Then $f(2)$ equals

  • [JEE MAIN 2019]
  • A

    $-4$

  • B

    $30$

  • C

    $-2$

  • D

    $8$

Similar Questions

Let $R$ be the set of all real numbers and $f(x)=\sin ^{10} x\left(\cos ^8 x+\cos ^4 x+\cos ^2 x+1\right)$ $x \in R$. Let  $S=\{\lambda \in R$ there exists a point $c \in(0,2 \pi)$ with $\left.f^{\prime}(c)=\lambda f(c)\right\}$ Then,

  • [KVPY 2020]

If $\phi (x) = {a^x}$, then ${\{ \phi (p)\} ^3} $ is equal to

Let $f(x)=2 x^{2}-x-1$ and $S =\{n \in Z :|f(n)| \leq 800\}$ . Then value of $\sum_{n \in S} f(n)$ is . . . .  .

  • [JEE MAIN 2022]

If $f({x_1}) - f({x_2}) = f\left( {\frac{{{x_1} - {x_2}}}{{1 - {x_1}{x_2}}}} \right)$ for ${x_1},{x_2} \in [ - 1,\,1]$, then $f(x)$ is

Function $f(x)={\left( {1 + \frac{1}{x}} \right)^x}$ then Domain of $f (x)$ is