Let $a = lm\left( {\frac{{1 + {z^2}}}{{2iz}}} \right)$, where $z$ is any non-zero complex number. The set $A = \{ a:\left| z \right| = 1\,and\,z \ne  \pm 1\} $ is equal to

  • [JEE MAIN 2013]
  • A

    $\left( { - 1,1} \right)$

  • B

    $\left[ { - 1,1} \right]$

  • C

    $\left[ {0,1} \right)$

  • D

    $\left( { - 1,0} \right]$

Similar Questions

If $z$ is a purely real number such that ${\mathop{\rm Re}\nolimits} (z) < 0$, then $arg(z)$ is equal to

Let $z$ and $w$ be the two non-zero complex numbers such that $|z|\, = \,|w|$ and $arg\,z + arg\,w = \pi $. Then $z$ is equal to

  • [IIT 1995]

The maximum value of $|z|$ where z satisfies the condition $\left| {z + \frac{2}{z}} \right| = 2$ is

If $Arg(z)$ denotes principal argument of a complex number $z$, then the value of expression $Arg\left( { - i{e^{i\frac{\pi }{9}}}.{z^2}} \right) + 2Arg\left( {2i{e^{-i\frac{\pi }{{18}}}}.\overline z } \right)$ is

If $arg\, z < 0$ then $arg\, (-z)\, -arg(z)$ is equal to