Let $a = lm\left( {\frac{{1 + {z^2}}}{{2iz}}} \right)$, where $z$ is any non-zero complex number. The set $A = \{ a:\left| z \right| = 1\,and\,z \ne \pm 1\} $ is equal to
$\left( { - 1,1} \right)$
$\left[ { - 1,1} \right]$
$\left[ {0,1} \right)$
$\left( { - 1,0} \right]$
If $z$ is a purely real number such that ${\mathop{\rm Re}\nolimits} (z) < 0$, then $arg(z)$ is equal to
Let $z$ and $w$ be the two non-zero complex numbers such that $|z|\, = \,|w|$ and $arg\,z + arg\,w = \pi $. Then $z$ is equal to
The maximum value of $|z|$ where z satisfies the condition $\left| {z + \frac{2}{z}} \right| = 2$ is
If $Arg(z)$ denotes principal argument of a complex number $z$, then the value of expression $Arg\left( { - i{e^{i\frac{\pi }{9}}}.{z^2}} \right) + 2Arg\left( {2i{e^{-i\frac{\pi }{{18}}}}.\overline z } \right)$ is
If $arg\, z < 0$ then $arg\, (-z)\, -arg(z)$ is equal to