Let $A = \{ {x_1},\,{x_2},\,............,{x_7}\} $ and $B = \{ {y_1},\,{y_2},\,{y_3}\} $ be two sets containing seven and three distinct elements respectively. Then the total number of functions $f : A \to B$ that are onto, if there exist exactly three elements $x$ in $A$ such that $f(x)\, = y_2$, is equal to
$14.{}^7{C_3}$
$16.{}^7{C_3}$
$14.{}^7{C_2}$
$12.{}^7{C_2}$
The domain of definition of the function $f (x) = {\log _{\left[ {x + \frac{1}{x}} \right]}}|{x^2} - x - 6|+ ^{16-x}C_{2x-1} + ^{20-3x}P_{2x-5}$ is
Where $[x]$ denotes greatest integer function.
Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by
$f(x)=\frac{2 x}{\sqrt{1+9 x^2}}$. If the composition of $f, \underbrace{(f \circ f \circ f \circ \ldots \circ f)}_{10 \text { times }}(x)=\frac{2^{10} x}{\sqrt{1+9 \alpha x^2}}$, then the value of $\sqrt{3 \alpha+1}$ is equal to....................
Let $A = \left\{ {{x_1},{x_2},{x_3},.....,{x_7}} \right\}$ and $B = \left\{ {{y_1},{y_2},{y_3}} \right\}$ be two sets containing seven and three distinct elements respectively. Then the total number of functions $f:A \to B$ which are onto, if there exist exactly three elements $x$ in $A$ such that $f(x) = {y_2}$ , is equal to
Let $a,b,c\; \in R.$ If $f\left( x \right) = a{x^2} + bx + c$ is such that $a + b + c = 3$ and $f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) + xy,$ $\forall x,y \in R,$ then $\mathop \sum \limits_{n = 1}^{10} f\left( n \right)$ is equal to :
The sentence, What is your Name ? is