In the standing wave shown, particles at the positions $A$ and $B$ have a phase difference of
$0$
$\frac{\pi }{2}$
$\frac{5\pi }{6}$
$\pi $
When a wave travels in a medium, the particle displacement is given by : $y = a\,\sin \,2\pi \left( {bt - cx} \right)$ where $a, b$ and $c$ are constants. The maximum particle velocity will be twice the wave velocity if
Given below are some functions of $x$ and $t$ to represent the displacement (transverse or longitudinal) of an elastic wave. State which of these represent a travelling wave
A car blowing a horn of frequency $350\, Hz$ is moving normally towards a wall with a speed of $5 \,m/s$. The beat frequency heard by a person standing between the car and the wall is ..... $Hz$ (speed of sound in air $= 350\, m/s$)
Equation of a plane progressive wave is given by $y = 0.6\, \sin 2\pi \left( {t - \frac{x}{2}} \right)$.On reflection from a denser medium its amplitude becomes $2/3$ of the amplitude of the incident wave. The equation of the reflected wave is :-
The apparent frequency of a sound wave as heard by an observer is $10\%$ more than the actual frequency. If the velocity of sound in air is $330\, m/sec$, then
$(i)$ The source may be moving towards the observer with a velocity of $30\,ms^{-1}$
$(ii)$ The source may be moving towards the observer with a velocity of $33\,ms^{-1}$
$(iii)$ The observer may be moving towards the source with a velocity of $30\,ms^{-1}$
$(iv)$ The observer may be moving towards the source with a velocity of $33\,ms^{-1}$