In the given reaction, ; $K_3 > K_2 > K_1$
then rate determining step will be
$1$
$2$
$3$
None of these
The instantaneous rate of disappearance of $MnO_4^-$ ion in the following reaction is $4.56\times10^{-3}\,Ms^{-1}$, $2MnO_4^-+ 10I^-+ 16 H^+ \to 2 Mn^{2+} + 5I_2 + 8H_2O$ The rate of appearance $I_2$ is
The value of $\frac{{{t_{0.875}}}}{{{t_{0.50}}}}$ for $n^{th}$ order reaction is
The rate of reaction between two reactants $A $ and $B$ decreases by a factor of $4$ if the concentration of reactant $B$ is doubled. The order of this reaction with respect to reactant $B$ is
The following data is given for reaction between $A$ and $B$
$S.NO.$ | $[A]$ $mol.L^{-1}$ | $[B]$ $mol.L^{-1}$ | $Rate$ $mol.L^{-1}\,sec^{-1}$ |
$I$ | $1 \times 10^{-2}$ | $2 \times 10^{-2}$ | $2 \times 10^{-4}$ |
$II$ | $2 \times 10^{-2}$ | $2 \times 10^{-2}$ | $4 \times 10^{-4}$ |
$III$ | $2 \times 10^{-2}$ | $4 \times 10^{-2}$ | $8 \times 10^{-4}$ |
Which of the following are correct statements -
$(a)$ Rate constant of the reaction $10^{-4}$
$(b)$ Rate law of the reaction is $k[A][B]$
$(c)$ Rate of reaction increases four times on doubling the concentration of both the reactant
Reaction rate between two substance $A$ and $B$ is expressed as following $:$ rate $= k[A ]^n[B]^m$ If the concentration of $A$ is doubled and concentration of $B$ is made half of initial concentration, the ratio of the new rate to the earlier rate will be