In the given reaction, ; $K_3 > K_2 > K_1$

then rate determining step will be

815-595

  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    None of these

Similar Questions

The instantaneous rate of disappearance of $MnO_4^-$ ion in the following reaction is $4.56\times10^{-3}\,Ms^{-1}$,  $2MnO_4^-+ 10I^-+ 16 H^+ \to  2 Mn^{2+} + 5I_2 + 8H_2O$ The rate of appearance $I_2$ is

The value of $\frac{{{t_{0.875}}}}{{{t_{0.50}}}}$ for $n^{th}$ order reaction is

The rate of reaction between two reactants $A $ and $B$ decreases by a factor of $4$ if the concentration of reactant $B$ is doubled. The order of this reaction with respect to reactant $B$ is

  • [AIPMT 2005]

The following data is given for reaction between $A$ and $B$

$S.NO.$  $[A]$    $mol.L^{-1}$  $[B]$    $mol.L^{-1}$ $Rate$    $mol.L^{-1}\,sec^{-1}$
$I$ $1 \times 10^{-2}$ $2 \times 10^{-2}$ $2 \times 10^{-4}$
$II$ $2 \times 10^{-2}$ $2 \times 10^{-2}$ $4 \times 10^{-4}$
$III$ $2 \times 10^{-2}$ $4 \times 10^{-2}$ $8 \times 10^{-4}$ 

  Which of the following are correct statements -

$(a)$  Rate constant of the reaction $10^{-4}$

$(b)$  Rate law of the reaction is $k[A][B]$

$(c)$  Rate of reaction increases four times on doubling the concentration of both the reactant

Reaction rate between two substance $A$ and $B$ is expressed as following $:$ rate $= k[A ]^n[B]^m$ If the concentration of $A$ is doubled and concentration of $B$ is made half of initial concentration, the ratio of the new rate to the earlier rate will be

  • [AIEEE 2012]