In the expression $P = El^2m^{-5}G^{-2}$, $E$, $l$, $m$ and $G$ denote energy, mass, angular momentum and gravitational constant respectively. Show that $P$ is a dimensionless quantity.
Given, expression is, $\quad P=E L^{2} m^{-5} G^{-2}$
where $\mathrm{E}$ is energy
$[\mathrm{E}]=\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]$
$\mathrm{m}$ is mass
$[\mathrm{m}]=\left[\mathrm{M}^{1}\right]$
$\mathrm{L}$ is angular momentum $[\mathrm{L}]=\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]$
$\mathrm{G}$ is gravitational constant $[\mathrm{G}]=\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]$
Substituting dimensions of each term in the given expression,
$[\mathrm{P}] =\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right] \times\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]^{2} \times\left[\mathrm{M}^{1}\right]^{-5} \times\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]^{-2}$
$=\left[\mathrm{M}^{1+2-5+2} \mathrm{~L}^{2+4-6} \mathrm{~T}^{-2-2+4}\right]=\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
Hence, $P$ is a dimensionless quantity.
The foundations of dimensional analysis were laid down by
The speed of a wave produced in water is given by $v=\lambda^a g^b \rho^c$. Where $\lambda$, g and $\rho$ are wavelength of wave, acceleration due to gravity and density of water respectively. The values of $a , b$ and $c$ respectively, are
In terms of basic units of mass $(M)$, length $(L)$, time $(T)$ and charge $(Q)$, the dimensions of magnetic permeability of vacuum $\left(\mu_0\right)$ would be
The potential energy $u$ of a particle varies with distance $x$ from a fixed origin as $u=\frac{A \sqrt{x}}{x+B}$, where $A$ and $B$ are constants. The dimensions of $A$ and $B$ are respectively
A dimensionless quantity is constructed in terms of electronic charge $e$, permittivity of free space $\varepsilon_0$, Planck's constant $h$, and speed of light $c$. If the dimensionless quantity is written as $e^\alpha \varepsilon_0^\beta h^7 c^5$ and $n$ is a non-zero integer, then $(\alpha, \beta, \gamma, \delta)$ is given by