In the arrangement shown both the vessels $A$ and $B$ are identical but amount of water in $B$ is double of that in $A$. The vessels are closed by identical leak proof pistons at the same height. The pistons are connected to the ends of lever arm. There is no friction between the pistons and the container walls. The system is in equilibrium in the situation shown. Now the valve in the horizontal tube connecting both the vessels is opened. In which direction will the water flow through the tube ?
From $A$ to $B$
From $B$ to $A$
Water will not flow
Insufficient information
The pressure of confined air is $p$. If the atmospheric pressure is $P$, then
A $U-$ tube in which the cross-sectional area of the limb on the left is one quarter, the limb on the right contains mercury (density $13.6 g/cm^3$). The level of mercury in the narrow limb is at a distance of $36 cm$ from the upper end of the tube. What will be the rise in the level of mercury in the right limb if the left limb is filled to the top with water ........ $cm$
Two identical cylindrical vessels with their bases at same level each contains a liquid of density $\rho$. The height of the liquid in one vessel is ${h_1}$ and that in the other vessel is ${h_2}$. The area of either base is $A$. The work done by gravity in equalizing the levels when the two vessels are connected, is
A hollow sphere of radius $R$ is filled completely with an ideal liquid of density $\rho$. sphere is moving horizontally with an acceleration $2g,$ where $g$ is acceleration due to gravity in the space. If minimum pressure of liquid is $P_0$, then pressure at the centre of sphere is
Mention two instruments which measure the atmospheric pressure.