In given figure, $X$ and $Y$ are two long straight parallel conductors each carrying a current of $2\,\, A.$ The force on each conductor is $F$ newtons. When the current in each is changed to $1\, A $ and reversed in direction, the force on each is now
$F/4$ and unchanged in direction
$F/2$ and reversed in direction
$F/2$ and unchanged in direction
$F/4$ and reversed in direction
Two thin long parallel wires, separated by a distance $d$ carry a current of $I$ $amp$ in the same direction. They will
An infinitely long current carrying wire and a small current carrying loop are in the plane of the paper as shown. the radius of the loop is $a$ and distance of its centre from the wire is $d (d >> a)$. If the loop applies a force $F$ on the wire then
A long straight wire is carrying current $I_1$ in $+z$ direction. The $x-y$ plane contains a closed circular loop carrying current $I_2$ and not encircling the straight wire. The force on the loop will be:
A straight wire of length $0.5\, metre$ and carrying a current of $1.2\, ampere$ placed in a uniform magnetic field of induction $2\, Tesla$. The magnetic field is perpendicular to the length of the wire. The force on the wire is.......$N$
A $3.0\; cm$ wire carrying a current of $10 \;A$ is placed inside a solenoid perpendicular to its axis. The magnetic field inside the solenoid is given to be $0.27\; T$. What is the magnetic force on the wire?